Linear Algebra Examples

Solve the Matrix Equation -3x+[[7,0,-1],[2,-3,4]]=[[10,0,8],[-19,-18,10]]
-3x+[70-12-34]=[1008-19-1810]
Step 1
Move all terms not containing a variable to the right side.
Tap for more steps...
Step 1.1
Subtract [70-12-34] from both sides of the equation.
-3x=[1008-19-1810]-[70-12-34]
-3x=[1008-19-1810]-[70-12-34]
Step 2
Simplify the right side.
Tap for more steps...
Step 2.1
Subtract the corresponding elements.
-3x=[10-70-08+1-19-2-18+310-4]
Step 2.2
Simplify each element.
Tap for more steps...
Step 2.2.1
Subtract 7 from 10.
-3x=[30-08+1-19-2-18+310-4]
Step 2.2.2
Subtract 0 from 0.
-3x=[308+1-19-2-18+310-4]
Step 2.2.3
Add 8 and 1.
-3x=[309-19-2-18+310-4]
Step 2.2.4
Subtract 2 from -19.
-3x=[309-21-18+310-4]
Step 2.2.5
Add -18 and 3.
-3x=[309-21-1510-4]
Step 2.2.6
Subtract 4 from 10.
-3x=[309-21-156]
-3x=[309-21-156]
-3x=[309-21-156]
Step 3
Multiply both sides by -13.
-13(-3x)=-13[309-21-156]
Step 4
Simplify.
Tap for more steps...
Step 4.1
Cancel the common factor of 3.
Tap for more steps...
Step 4.1.1
Move the leading negative in -13 into the numerator.
-13(-3x)=-13[309-21-156]
Step 4.1.2
Factor 3 out of -3x.
-13(3(-x))=-13[309-21-156]
Step 4.1.3
Cancel the common factor.
-13(3(-x))=-13[309-21-156]
Step 4.1.4
Rewrite the expression.
--x=-13[309-21-156]
--x=-13[309-21-156]
Step 4.2
Multiply -1 by -1.
1x=-13[309-21-156]
Step 4.3
Multiply x by 1.
x=-13[309-21-156]
Step 4.4
Multiply -13 by each element of the matrix.
x=[-133-130-139-13-21-13-15-136]
Step 4.5
Simplify each element in the matrix.
Tap for more steps...
Step 4.5.1
Cancel the common factor of 3.
Tap for more steps...
Step 4.5.1.1
Move the leading negative in -13 into the numerator.
x=[-133-130-139-13-21-13-15-136]
Step 4.5.1.2
Cancel the common factor.
x=[-133-130-139-13-21-13-15-136]
Step 4.5.1.3
Rewrite the expression.
x=[-1-130-139-13-21-13-15-136]
x=[-1-130-139-13-21-13-15-136]
Step 4.5.2
Multiply -130.
Tap for more steps...
Step 4.5.2.1
Multiply 0 by -1.
x=[-10(13)-139-13-21-13-15-136]
Step 4.5.2.2
Multiply 0 by 13.
x=[-10-139-13-21-13-15-136]
x=[-10-139-13-21-13-15-136]
Step 4.5.3
Cancel the common factor of 3.
Tap for more steps...
Step 4.5.3.1
Move the leading negative in -13 into the numerator.
x=[-10-139-13-21-13-15-136]
Step 4.5.3.2
Factor 3 out of 9.
x=[-10-13(3(3))-13-21-13-15-136]
Step 4.5.3.3
Cancel the common factor.
x=[-10-13(33)-13-21-13-15-136]
Step 4.5.3.4
Rewrite the expression.
x=[-10-13-13-21-13-15-136]
x=[-10-13-13-21-13-15-136]
Step 4.5.4
Multiply -1 by 3.
x=[-10-3-13-21-13-15-136]
Step 4.5.5
Cancel the common factor of 3.
Tap for more steps...
Step 4.5.5.1
Move the leading negative in -13 into the numerator.
x=[-10-3-13-21-13-15-136]
Step 4.5.5.2
Factor 3 out of -21.
x=[-10-3-13(3(-7))-13-15-136]
Step 4.5.5.3
Cancel the common factor.
x=[-10-3-13(3-7)-13-15-136]
Step 4.5.5.4
Rewrite the expression.
x=[-10-3-1-7-13-15-136]
x=[-10-3-1-7-13-15-136]
Step 4.5.6
Multiply -1 by -7.
x=[-10-37-13-15-136]
Step 4.5.7
Cancel the common factor of 3.
Tap for more steps...
Step 4.5.7.1
Move the leading negative in -13 into the numerator.
x=[-10-37-13-15-136]
Step 4.5.7.2
Factor 3 out of -15.
x=[-10-37-13(3(-5))-136]
Step 4.5.7.3
Cancel the common factor.
x=[-10-37-13(3-5)-136]
Step 4.5.7.4
Rewrite the expression.
x=[-10-37-1-5-136]
x=[-10-37-1-5-136]
Step 4.5.8
Multiply -1 by -5.
x=[-10-375-136]
Step 4.5.9
Cancel the common factor of 3.
Tap for more steps...
Step 4.5.9.1
Move the leading negative in -13 into the numerator.
x=[-10-375-136]
Step 4.5.9.2
Factor 3 out of 6.
x=[-10-375-13(3(2))]
Step 4.5.9.3
Cancel the common factor.
x=[-10-375-13(32)]
Step 4.5.9.4
Rewrite the expression.
x=[-10-375-12]
x=[-10-375-12]
Step 4.5.10
Multiply -1 by 2.
x=[-10-375-2]
x=[-10-375-2]
x=[-10-375-2]
 [x2  12  π  xdx ]